Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Semin Cancer Biol ; 83: 152-165, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-32858230

RESUMEN

The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carcinogénesis , Metilación de ADN , Epigénesis Genética , Epigenómica , Femenino , Humanos
2.
Semin Cancer Biol ; 83: 208-226, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-32717336

RESUMEN

Skin, the largest organ of human body, is vital for the existence and survival of human beings. Further, developmental and physiological mechanisms associated with cutaneous biology are vital for homeostasis as their deregulations converge towards pathogenesis of a number of skin diseases, including cancer. It has now been well accepted that most of the transcribed human genome lacks protein translational potential and has been termed as non-coding RNAs (nc-RNAs), which includes circular RNA (circRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), micro RNA (miRNA), long noncoding RNA (lncRNA), and piwi-interacting RNA (piRNAs). These nc-RNAs have gained great attention in both preclinical and clinical research as they are critical in most of the regulatory mechanisms of biological homeostasis and disease development by controlling the gene expression at transcriptional, post-transcriptional and epigenetic level. In this review we have illustrated how nc-RNAs are critical in the development and maintenance of cutaneous homeostasis and functioning and also, most importantly, how the dysregulated expression and functioning of nc-RNAs play critical role in the pathogenesis of cutaneous diseases including cancer and the autoimmune skin diseases. Considering the vital role of nc-RNAs in cancer resistance, metastasis and autoimmune diseases, we have also highlighted their role as promising prognostic and therapeutic targets for the cutaneous diseases.


Asunto(s)
Enfermedades Autoinmunes , MicroARNs , ARN Largo no Codificante , Neoplasias Cutáneas , Enfermedades Autoinmunes/genética , Humanos , ARN Largo no Codificante/genética , ARN Nucleolar Pequeño/genética , ARN no Traducido/genética , Neoplasias Cutáneas/genética
3.
Biomed Pharmacother ; 144: 112358, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794241

RESUMEN

Effective treatment of lung cancer remains a significant clinical challenge due to its multidrug resistance and side effects of the current treatment options. The high mortality associated with this malignancy indicates the need for new therapeutic interventions with fewer side effects. Natural compounds offer various benefits such as easy access, minimal side effects, and multi-molecular targets and thus, can prove useful in treating lung cancer. Sanguinarine (SNG), a natural compound, possesses favorable therapeutic potential against a variety of cancers. Here, we examined the underlying molecular mechanisms of SNG in Non-Small Cell Lung Cancer (NSCLC) cells. SNG suppressed cell growth and induced apoptosis via downregulation of the constitutively active JAK/STAT pathway in all the NSCLC cell lines. siRNA silencing of STAT3 in NSCLC cells further confirmed the involvement of the JAK/STAT signaling cascade. SNG treatment increased Bax/Bcl-2 ratio, which contributed to a leaky mitochondrial membrane leading to cytochrome c release accompanied by caspase activation. In addition, we established the antitumor effects of SNG through reactive oxygen species (ROS) production, as inhibiting ROS production prevented the apoptosis-inducing potential of SNG. In vivo xenograft tumor model further validated our in vitro findings. Overall, our study investigated the molecular mechanisms by which SNG induces apoptosis in NSCLC, providing avenues for developing novel natural compound-based cancer therapies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Benzofenantridinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Isoquinolinas/farmacología , Quinasas Janus/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , División Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , ARN Interferente Pequeño/farmacología , Factor de Transcripción STAT3 , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Sci Rep ; 11(1): 14090, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238985

RESUMEN

MAIT cells have been shown to be activated upon several viral infections in a TCR-independent manner by responding to inflammatory cytokines secreted by antigen-presenting cells. Recently, a few studies have shown a similar activation of MAIT cells in response to severe acute respiratory coronavirus 2 (SARS-CoV-2) infection. In this study, we investigate the effect of SARS-CoV-2 infection on the frequency and phenotype of MAIT cells by flow cytometry, and we test in vitro stimulation conditions on the capacity to enhance or rescue the antiviral function of MAIT cells from patients with coronavirus disease 2019 (COVID-19). Our study, in agreement with recently published studies, confirmed the decline in MAIT cell frequency of hospitalized donors in comparison to healthy donors. MAIT cells of COVID-19 patients also had lower expression levels of TNF-alpha, perforin and granzyme B upon stimulation with IL-12 + IL-18. 24 h' incubation with IL-7 successfully restored perforin expression levels in COVID-19 patients. Combined, our findings support the growing evidence that SARS-CoV-2 is dysregulating MAIT cells and that IL-7 treatment might improve their function, rendering them more effective in protecting the body against the virus.


Asunto(s)
COVID-19/prevención & control , COVID-19/virología , Interleucina-7/farmacología , Células T Invariantes Asociadas a Mucosa/fisiología , Células T Invariantes Asociadas a Mucosa/virología , SARS-CoV-2/patogenicidad , Células Cultivadas , Femenino , Granzimas/metabolismo , Humanos , Masculino , Células T Invariantes Asociadas a Mucosa/metabolismo , Perforina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Sci Rep ; 10(1): 17164, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051490

RESUMEN

Metabolic pathways that are corrupted at early stages of insulin resistance (IR) remain elusive. This study investigates changes in body metabolism in clinically healthy and otherwise asymptomatic subjects that may become apparent already under compromised insulin sensitivity (IS) and prior to IR. 47 clinically healthy Arab male subjects with a broad range of IS, determined by hyperinsulinemic-euglycemic clamp (HIEC), were investigated. Untargeted metabolomics and complex lipidomics were conducted on serum samples collected under fasting and HIEC conditions. Linear models were used to identify associations between metabolites concentrations and IS levels. Among 1896 identified metabolites, 551 showed significant differences between fasting and HIEC, reflecting the metabolic switch in energy utilization. At fasting, 336 metabolites, predominantly di- and tri-acylglycerols, showed significant differences between subjects with low and high levels of IS. Changes in amino acid, carbohydrate and fatty acid metabolism in response to insulin were impaired in subjects with low IS. Association of altered mannose and amino acids with IS was also replicated in an independent cohort of T2D patients. We identified metabolic phenotypes that characterize clinically healthy Arab subjects with low levels of IS at their fasting state. Our study is providing further insights into the metabolic pathways that precede IR.


Asunto(s)
Ayuno/metabolismo , Ayuno/fisiología , Hiperinsulinismo/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Adulto , Árabes , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Técnica de Clampeo de la Glucosa/métodos , Humanos , Masculino , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Adulto Joven
7.
Front Oncol ; 10: 1744, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984059

RESUMEN

Colorectal cancer (CRC) forms one of the highest ranked cancer types in the world with its increasing incidence and mortality rates despite the advancement in cancer therapeutics. About 50% of human CRCs are reported to have defective p53 expression resultant of TP53 gene mutation often contributing to drug resistance. The current study was aimed to investigate the response of wild-type TP53 harboring HCT 116 and mutant TP53 harboring HT 29 colon cancer cells to chemotherapeutic drug oxaliplatin (OX) and to elucidate the underlying molecular mechanisms of sensitivity/resistance in correlation to their p53 status. OX inhibited growth of wild-type p53-harboring colon cancer cells via p53/p21-Bax mediated apoptosis. Our study revealed that dysregulated phosphorylation of p53, autophagy as well as cancer stemness attributes the mutant p53-harboring colon cancer cells impaired sensitivity to OX.

8.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679860

RESUMEN

Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host's immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κß, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.


Asunto(s)
Citocinas/metabolismo , Mieloma Múltiple/metabolismo , Transducción de Señal , Animales , Médula Ósea/inmunología , Médula Ósea/metabolismo , Médula Ósea/patología , Proliferación Celular , Citocinas/análisis , Citocinas/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Invasividad Neoplásica/inmunología , Invasividad Neoplásica/patología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Escape del Tumor , Microambiente Tumoral
9.
Cancers (Basel) ; 12(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532107

RESUMEN

Human papillomavirus (HPV) has been implicated in the etiology of a variety of human cancers. Studies investigating the presence of high-risk (HR) HPV in breast tissue have generated considerable controversy over its role as a potential risk factor for breast cancer (BC). This is the first investigation reporting the prevalence and type distribution of high-risk HPV infection in breast tissue in the population of Qatar. A prospective comparison blind research study herein reconnoitered the presence of twelve HR-HPV types' DNA using multiplex PCR by screening a total of 150 fresh breast tissue specimens. Data obtained shows that HR-HPV types were found in 10% of subjects with breast cancer; of which the presence of HPV was confirmed in 4/33 (12.12%) of invasive carcinomas. These findings, the first reported from the population of Qatar, suggest that the selective presence of HPV in breast tissue is likely to be a related factor in the progression of certain cases of breast cancer.

10.
J Clin Invest ; 130(6): 2827-2844, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338640

RESUMEN

Inherited bone marrow failure syndromes (IBMFSs) are a heterogeneous group of disorders characterized by defective hematopoiesis, impaired stem cell function, and cancer susceptibility. Diagnosis of IBMFS presents a major challenge due to the large variety of associated phenotypes, and novel, clinically relevant biomarkers are urgently needed. Our study identified nuclear interaction partner of ALK (NIPA) as an IBMFS gene, as it is significantly downregulated in a distinct subset of myelodysplastic syndrome-type (MDS-type) refractory cytopenia in children. Mechanistically, we showed that NIPA is major player in the Fanconi anemia (FA) pathway, which binds FANCD2 and regulates its nuclear abundance, making it essential for a functional DNA repair/FA/BRCA pathway. In a knockout mouse model, Nipa deficiency led to major cell-intrinsic defects, including a premature aging phenotype, with accumulation of DNA damage in hematopoietic stem cells (HSCs). Induction of replication stress triggered a reduction in and functional decline of murine HSCs, resulting in complete bone marrow failure and death of the knockout mice with 100% penetrance. Taken together, the results of our study add NIPA to the short list of FA-associated proteins, thereby highlighting its potential as a diagnostic marker and/or possible target in diseases characterized by hematopoietic failure.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Células Madre Hematopoyéticas/metabolismo , Proteínas Nucleares , Animales , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/metabolismo , Síndromes Congénitos de Insuficiencia de la Médula Ósea/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Células Madre Hematopoyéticas/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Unión Proteica
11.
Mol Cancer ; 19(1): 57, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164715

RESUMEN

Early-stage detection of leukemia is a critical determinant for successful treatment of the disease and can increase the survival rate of leukemia patients. The factors limiting the current screening approaches to leukemia include low sensitivity and specificity, high costs, and a low participation rate. An approach based on novel and innovative biomarkers with high accuracy from peripheral blood offers a comfortable and appealing alternative to patients, potentially leading to a higher participation rate.Recently, non-coding RNAs due to their involvement in vital oncogenic processes such as differentiation, proliferation, migration, angiogenesis and apoptosis have attracted much attention as potential diagnostic and prognostic biomarkers in leukemia. Emerging lines of evidence have shown that the mutational spectrum and dysregulated expression of non-coding RNA genes are closely associated with the development and progression of various cancers, including leukemia. In this review, we highlight the expression and functional roles of different types of non-coding RNAs in leukemia and discuss their potential clinical applications as diagnostic or prognostic biomarkers and therapeutic targets.


Asunto(s)
Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Leucemia/patología , ARN Largo no Codificante/genética , Animales , Progresión de la Enfermedad , Humanos , Leucemia/tratamiento farmacológico , Leucemia/genética , Metástasis de la Neoplasia
12.
Cancers (Basel) ; 12(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033146

RESUMEN

Breast cancer is regarded as a heterogeneous and complicated disease that remains the prime focus in the domain of public health concern. Next-generation sequencing technologies provided a new perspective dimension to non-coding RNAs, which were initially considered to be transcriptional noise or a product generated from erroneous transcription. Even though understanding of biological and molecular functions of noncoding RNA remains enigmatic, researchers have established the pivotal role of these RNAs in governing a plethora of biological phenomena that includes cancer-associated cellular processes such as proliferation, invasion, migration, apoptosis, and stemness. In addition to this, the transmission of microRNAs and long non-coding RNAs was identified as a source of communication to breast cancer cells either locally or systemically. The present review provides in-depth information with an aim at discovering the fundamental potential of non-coding RNAs, by providing knowledge of biogenesis and functional roles of micro RNA and long non-coding RNAs in breast cancer and breast cancer stem cells, as either oncogenic drivers or tumor suppressors. Furthermore, non-coding RNAs and their potential role as diagnostic and therapeutic moieties have also been summarized.

13.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936675

RESUMEN

The constitutive activation of Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signal transduction is well elucidated in STAT3-mediated oncogenesis related to thyroid cancer and is considered to be a plausible therapeutic target. Hence, we investigated whether curcumin, a natural compound, can target the JAK/STAT3 signaling pathway to induce cytotoxic effects in papillary thyroid cancer (PTC) cell lines (BCPAP and TPC-1) and derived thyroid cancer stem-like cells (thyrospheres). Curcumin suppressed PTC cell survival in a dose-dependent manner via the induction of caspase-mediated apoptosis and caused the attenuation of constitutively active STAT3 (the dephosphorylation of Tyr705-STAT3) without affecting STAT3. Gene silencing with STAT3-specific siRNA showed the modulation of genes associated with cell growth and proliferation. The cotreatment of PTC cell lines with curcumin and cisplatin synergistically potentiated cytotoxic effects via the suppression of JAK/STAT3 activity along with the inhibition of antiapoptotic genes and the induction of proapoptotic genes, and it also suppressed the migration of PTC cells by downregulating matrix metalloproteinases and the inhibition of colony formation. Finally, thyrospheres treated with curcumin and cisplatin showed suppressed STAT3 phosphorylation, a reduced formation of thyrospheres, and the downregulated expression of stemness markers, in addition to apoptosis. The current study's findings suggest that curcumin synergistically enhances the anticancer activity of cisplatin in PTC cells as well as in cancer stem-like cells by targeting STAT3, which suggests that curcumin combined with chemotherapeutic agents may provide better therapeutic outcomes.


Asunto(s)
Apoptosis/efectos de los fármacos , Curcumina/farmacología , Quinasas Janus/metabolismo , Células Madre Neoplásicas/patología , Factor de Transcripción STAT3/metabolismo , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Sinergismo Farmacológico , Humanos , Interleucina-6/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias de la Tiroides/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Cancers (Basel) ; 11(10)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581454

RESUMEN

Colorectal cancer (CRC) is a leading killer cancer worldwide and one of the most common malignancies with increasing incidences of mortality. Guggulsterone (GS) is a plant sterol used for treatment of various ailments such as obesity, hyperlipidemia, diabetes, and arthritis. In the current study, anti-cancer effects of GS in human colorectal cancer cell line HCT 116 was tested, potential targets identified using mass spectrometry-based label-free shotgun proteomics approach and key pathways validated by proteome profiler antibody arrays. Comprehensive proteomic profiling identified 14 proteins as significantly dysregulated. Proteins involved in cell proliferation/migration, tumorigenesis, cell growth, metabolism, and DNA replication were downregulated while the protein with functional role in exocytosis/tumor suppression was found to be upregulated. Our study evidenced that GS treatment altered expression of Bcl-2 mediated the mitochondrial release of cytochrome c which triggered the formation of apoptosome as well as activation of caspase-3/7 leading to death of HCT 116 cells via intrinsic apoptosis pathway. GS treatment also induced expression of p53 protein while p21 expression was unaltered with no cell cycle arrest. In addition, GS was found to inhibit NF-kB signaling in colon cancer cells by quelling the expression of its regulated gene products Bcl-2, cIAP-1, and survivin.

15.
Artículo en Inglés | MEDLINE | ID: mdl-30873121

RESUMEN

Background: Plasma elevated levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) have been associated with obesity and insulin resistance, but their relationship to stimulated insulin resistance (IR) in PCOS and in response to exercise is unknown. Indeed, it is unknown whether the mechanism of IR in PCOS is mediated through changes in the metabolome. Methods: Twelve women with polycystic ovary syndrome (PCOS) and ten age and body mass index matched controls completed an 8 week supervised exercise program at 60% maximal oxygen consumption. Before and after the exercise program, all participants underwent maximal IR stimulation with intralipid infusions followed by insulin sensitivity (IS) measurement by hyperinsulinaemic euglycaemic clamps. Amino acid profiles and metabolites were taken at baseline and at maximal insulin resistance stimulation before and after the exercise program. Results: At baseline, PCOS subjects showed increased leucine/isoleucine, glutamate, methionine, ornithine, phenylalanine, tyrosine and proline (p < 0.05) that, following exercise, did not differ from controls. While compering within the groups, no significant changes in the amino acid levels before and after exercise were observed. Exercise improved VO2 max (p < 0.01) but did not alter weight. Amino acid profiles were unaffected by an acute increase in IR induced by the lipid infusion. IS was lower in PCOS (p < 0.001) and was further decreased by the lipid infusion in both PCOS and controls. Although, exercise improved IS in both PCOS and in controls, the IS remained compromised in PCOS. Conclusion: The baseline amino acid profile in PCOS reflected that seen in obese subjects and differed to controls. After exercise, and despite no change in weight in either group, there were no differences in the amino acid profile between PCOS and controls. This shows that exercise may normalize the amino acid metabolome, irrespective of weight. ISRCTN number: ISRCTN42448814.

16.
Cancer Lett ; 430: 133-147, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-29777783

RESUMEN

Suppressing glutaminolysis does not always induce cancer cell death in glutamine dependent tumors because cells may switch to alternative energy sources. To reveal compensatory metabolic pathways, we investigated the metabolome-wide cellular response to inhibited glutaminolysis in cancer cells. Glutaminolysis inhibition with C.968 suppressed cell proliferation but was insufficient to induce cancer cell death. We found that lipid catabolism was activated as a compensation for glutaminolysis inhibition. Accelerated lipid catabolism, together with oxidative stress induced by glutaminolysis inhibition, triggered autophagy. Simultaneously inhibiting glutaminolysis and either beta oxidation with trimetazidine or autophagy with chloroquine both induced cancer cell death. Here we identified metabolic escape mechanisms contributing to cancer cell survival under treatment and we suggest potentially translational strategy for combined cancer therapy, given that chloroquine is an FDA approved drug. Our findings are first to show efficiency of combined inhibition of glutaminolysis and beta oxidation as potential anti-cancer strategy as well as add to the evidence that combined inhibition of glutaminolysis and autophagy may be effective in glutamine-addicted cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/efectos de los fármacos , Glutamina/metabolismo , Lipólisis/efectos de los fármacos , Neoplasias/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Benzofenantridinas/farmacología , Benzofenantridinas/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Cloroquina/uso terapéutico , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Humanos , Metabolómica , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos
17.
Leuk Lymphoma ; 59(5): 1051-1063, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28797197

RESUMEN

S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.


Asunto(s)
Neoplasias Hematológicas/fisiopatología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Humanos , Pronóstico , Proto-Oncogenes Mas
18.
PLoS One ; 12(7): e0180895, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28704451

RESUMEN

The X-linked inhibitor of apoptosis (XIAP) is a viable molecular target for anticancer drugs that overcome apoptosis-resistance of malignant cells. XIAP is an inhibitor of apoptosis, mediating through its association with BIR3 domain of caspase 9. Embelin, a quinone derivative isolated from the Embelia ribes plant, has been shown to exhibit chemopreventive, anti-inflammatory, and apoptotic activities via inhibiting XIAP activity. In this study, we found that embelin causes a dose-dependent suppression of proliferation in leukemic cell lines K562 and U937. Embelin mediated inhibition of proliferation correlates with induction of apoptosis. Furthermore, embelin treatment causes loss of mitochondrial membrane potential and release of cytochrome c, resulting in subsequent activation of caspase-3 followed by polyadenosin-5'-diphosphate-ribose polymerase (PARP) cleavage. In addition, embelin treatment of leukemic cells results in a decrease of constitutive phosphorylations/activation level of AKT and downregulation of XIAP. Gene silencing of XIAP and AKT expression showed a link between XIAP expression and activated AKT in leukemic cells. Interestingly, targeting of XIAP and PI3-kinase/AKT signaling augmented inhibition of proliferation and induction of apoptosis in leukemic cells. Altogether these findings raise the possibility that embelin alone or in combination with inhibitors of PI3-kinase/AKT pathway may have therapeutic usage in leukemia and possibly other malignancies with up-regulated XIAP pathway.


Asunto(s)
Benzoquinonas/farmacología , Cromonas/farmacología , Leucemia/metabolismo , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562 , Leucemia/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
19.
J Transl Med ; 14(1): 140, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27188855

RESUMEN

BACKGROUND: Diabetes testing using saliva, rather than blood and urine, could facilitate diabetes screening in public spaces. We previously identified 1,5-anhydro-D-glucitol (1,5-AG) in saliva as a diabetes biomarker. The Glycomark™ assay kit is FDA approved for 1,5-AG measurement in blood. Here we evaluated its applicability for 1,5-AG quantification in saliva. METHODS: Using pooled saliva samples, we validated Glycomark™ assay use with a RX Daytona(+) clinical chemistry analyser. We then used this set-up to analyse 82 paired blood and saliva samples from a diabetes case-control study, for which broad mass spectrometry-based characterization of the blood and saliva metabolome was also available. Osmolality was measured to account for potential variability in saliva samples. RESULTS: The technical variability of the read-outs for the pooled saliva samples (CV = 2.05 %) was comparable to that obtained with manufacturer-provided blood surrogate quality controls (CV = 1.38-1.8 %). We found a high correlation between Glycomark assay and mass spectrometry measurements of serum 1,5-AG (r(2) = 0.902), showing reproducibility of the non-targeted metabolomics results. The significant correlation between the osmolality measurements performed at two independent platforms with the time interval of 2 years (r(2) = 0.887), also indicates the sample integrity. The assay read-out for saliva was not correlated with the mass spectrometry-based 1,5-AG saliva measurements. Comparison with the full saliva metabolome revealed a high correlation of the saliva assay read-outs with galactose. CONCLUSIONS: Glycomark™ assay read-outs for saliva were stable and replicable. However, the signal was dominated by galactose, which is biochemically similar to 1,5-AG and absent in blood. Adapting the 1,5-AG kit for saliva analysis will require enzymatic depletion of galactose. This should be feasible, since the assay already includes a similar step for glucose depletion from blood samples.


Asunto(s)
Bioensayo/métodos , Desoxiglucosa/sangre , Metabolómica/métodos , Saliva/metabolismo , Adulto , Anciano , Femenino , Galactosa/metabolismo , Humanos , Masculino , Espectrometría de Masas , Metaboloma , Persona de Mediana Edad , Concentración Osmolar
20.
J Transl Med ; 14: 69, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26956626

RESUMEN

BACKGROUND: Proteasome inhibitors are attractive cancer therapeutic agents because they can regulate apoptosis-related proteins. Bortezomib also known as Velcade(®), a proteasome inhibitor that has been approved by the food and drug administration for treatment of patients with multiple myeloma, and many clinical trials are ongoing to examine to the efficacy of bortezomib for the treatment of other malignancies. Bortezomib has been shown to induce apoptosis and inhibit cell growth of many cancer cells. In current study, we determine whether bortezomib induces cell death/apoptosis in CML. METHODS: Cell viability was measured using MTT assays. Apoptosis was measured by annexin V/PI dual staining and DNA fragmentation assays. Immunoblotting was performed to examine the expression of proteins. Colony assays were performed using methylcellulose. RESULTS: Treatment of CML cells with bortezomib results in downregulation of S-phase kinase protein 2 (SKP2) and concomitant stabilization of the expression of p27Kip1. Furthermore, knockdown of SKP2 with small interference RNA specific for SKP2 caused accumulation of p27Kip1. CML cells exposed to bortezomib leads to conformational changes in Bax protein, resulting in loss of mitochondrial membrane potential and leakage of cytochrome c to the cytosol. In the cytosol, cytochrome c causes sequential activation of caspase-9, caspase-3, PARP cleavage and apoptosis. Pretreatment of CML cells with a universal inhibitor of caspases, z-VAD-fmk, prevents bortezomib-mediated apoptosis. Our data also demonstrated that bortezomib treatment of CML downregulates the expression of inhibitor of apoptosis proteins. Finally, inhibition of proteasome pathways by bortezomib suppresses colony formation ability of CML cells. CONCLUSIONS: Altogether, these findings suggest that bortezomib suppresses the cell proliferation via induction of apoptosis in CML cells by downregulation of SKP2 with concomitant accumulation of p27Kip1, suggesting that proteasomal pathway may form novel therapeutic targets for better management of CML.


Asunto(s)
Apoptosis/efectos de los fármacos , Bortezomib/farmacología , Regulación hacia Abajo/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Antineoplásicos/farmacología , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Ubiquitinadas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...